A Critical Role for GluN2B-Containing NMDA Receptors in Cortical Development and Function
نویسندگان
چکیده
The subunit composition of N-methyl D-aspartate receptors (NMDARs) is tightly regulated during cortical development. NMDARs are initially dominated by GluN2B (NR2B), whereas GluN2A (NR2A) incorporation increases after birth. The function of GluN2B-containing NMDARs during development, however, is incompletely understood. We generated a mouse in which we genetically replaced GluN2B with GluN2A (2B→2A). Although this manipulation restored NMDAR-mediated currents at glutamatergic synapses, it did not rescue GluN2B loss of function. Protein translation-dependent homeostatic synaptic plasticity is occluded in the absence of GluN2B, and AMPA receptor contribution is enriched at excitatory cortical synapses. Our experiments indicate that specificity of GluN2B-mediated signaling is due to its unique interaction with the protein effector alpha calcium-calmodulin kinase II and the regulation of the mTOR pathway. Homozygous 2B→2A mice exhibited high rates of lethality, suppressed feeding, and depressed social exploratory behavior. These experiments indicate that GluN2B-containing NMDARs activate unique cellular processes that cannot be rescued by replacement with GluN2A.
منابع مشابه
Endocytosis of GluN2B-containing NMDA receptor mediates NMDA-induced excitotoxicity
Abstract N-methyl-D-aspartate (NMDA) receptor overactivation is involved in neuronal damage after stroke. However, the mechanism underlying NMDA receptor-mediated excitotoxicity remains unclear. In this study, we confirmed that excessive activation of NMDARs led to cell apoptosis in PC12 cells and in primary cultured cortical neurons, which was mediated predominantly by the GluN2B-containing, b...
متن کاملStretch injury selectively enhances extrasynaptic, GluN2B-containing NMDA receptor function in cortical neurons.
Alterations in the function and expression of NMDA receptors are observed after in vivo and in vitro traumatic brain injury. We recently reported that mechanical stretch injury in cortical neurons transiently increases the contribution of NMDA receptors to network activity and results in an increase in calcium-permeable AMPA (CP-AMPA) receptor-mediated transmission 4 h postinjury (Goforth et al...
متن کاملGluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.
NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملCytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors.
Cytisine (CYT), one of the principal bioactive components derived from the seeds of Cytisus laborinum L, has been widely used for central nervous system (CNS) diseases treatment. The present study investigated the protective effect of CYT on cultured cortical neural injury induced by N-methyl-d-aspartate (NMDA). Our data showed that CYT conferred protective effect against loss of cellular viabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 72 شماره
صفحات -
تاریخ انتشار 2011